WPCB-Tree: A Novel Flash-Aware B-Tree Index Using a Write Pattern Converter

نویسندگان

  • Van Phi Ho
  • Dong-Joo Park
چکیده

For the past few years, flash memory has been widely used because of its prominent advantages such as fast access speed, nonvolatility, high reliability, and low power consumption. However, flash memory still has several drawbacks that need to be overcome, e.g., the erase-before-write characteristic and a limited life cycle. Among these drawbacks, the erase-before-write characteristic causes the B-tree implementation on flash memory to be inefficient because it generates many erase operations. This study introduces a novel B-tree index structure using a write pattern converter (WPCB-tree) for flash memory. A WPCB-tree can minimize the risk of data loss and can improve the performance of the B-tree on flash memory. This WPCB-tree uses some blocks of flash memory as a buffer that temporarily stores all updated nodes. When the buffer is full, a buffer block is selected by a greedy algorithm, then the node pages in the block are converted into a sequential write pattern, and finally they are written into flash memory. In addition, in the case that all key values of a leaf node are continuously inserted, the WPCB-tree does not split the leaf node. As a result, this mechanism helps the WPCB-tree reduce the number of write operations on the flash memory. The experimental results show that the proposed B-tree variant on flash memory yields a better performance than that of other existing variants of the B-tree.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FAST: A Generic Framework for Flash-Aware Spatial Trees

Spatial tree index structures are crucial components in spatial data management systems, designed with the implicit assumption that the underlying external memory storage is the conventional magnetic hard disk drives. This assumption is going to be invalid soon, as flash memory storage is increasingly adopted as the main storage media in mobile devices, digital cameras, embedded sensors, and no...

متن کامل

A B-Tree index extension to enhance response time and the life cycle of flash memory

Flash memory has critical drawbacks such as long latency of its write operation and a short life cycle. In order to overcome these limitations, the number of write operations to flash memory devices needs to be minimized. The B-Tree index structure, which is a popular hard disk based index structure, requires an excessive number of write operations when updating it to flash memory. To address t...

متن کامل

Generic and efficient framework for search trees on flash memory storage systems

Tree index structures are crucial components in data management systems. Existing tree index structure are designed with the implicit assumption that the underlying external memory storage is the conventional magnetic hard disk drives. This assumption is going to be invalid soon, as flash memory storage is increasingly adopted as the main storage media in mobile devices, digital cameras, embedd...

متن کامل

Dynamic Forest: An Efficient Index Structure for NAND Flash Memory

In this paper, we present an efficient index structure for NAND flash memory, called the Dynamic Forest (D-Forest). Since write operations incur high overhead on NAND flash memory, D-Forest is designed to minimize write operations for index updates. The experimental results show that D-Forest significantly reduces write operations compared to the conventional B+-tree. key words: NAND flash memo...

متن کامل

AS B-tree: A Study of an Efficient B+-tree for SSDs

Recently, flash memory has been utilized as the primary storage device in mobile devices. SSDs have been gaining popularity as the primary storage device in laptop and desktop computers and even in enterprise-level server machines. SSDs have an array of NAND flash memory packages and are therefore able to achieve concurrent parallel access to one or more flash memory packages. In order to take ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Symmetry

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018